Search results
Results from the WOW.Com Content Network
Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution () differs from cross-correlation only in that either () or () is reflected about the y-axis in convolution; thus it is a cross-correlation of () and (), or () and ().
The two methods are also compared in Figure 3, created by Matlab simulation. The contours are lines of constant ratio of the times it takes to perform both methods. When the overlap-add method is faster, the ratio exceeds 1, and ratios as high as 3 are seen. Fig 3: Gain of the overlap-add method compared to a single, large circular convolution.
The row-column method can be applied when one of the signals in the convolution is separable. The method exploits the properties of separability in order to achieve a method of calculating the convolution of two multidimensional signals that is more computationally efficient than direct computation of each sample (given that one of the signals ...
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
For example P(n i ≥ k), the probability that the total number of customers at service center i is greater than or equal to k, must be summed over all values of n i ≥ k and, for each such value of n i, over all possible ways the remaining N – n i customers can be distributed across the other M-1 service centers in the network.
For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Two basic methods for solving the global sparse coding problem are orthogonal matching pursuit (OMP) and basis pursuit (BP). OMP is a greedy algorithm that iteratively selects the atom best correlated with the residual between and a current estimation, followed by a projection onto a subset of pre-selected atoms. On the other hand, basis ...