enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Elliptic equation - Wikipedia

    en.wikipedia.org/wiki/Elliptic_equation

    An elliptic equation can mean: The equation of an ellipse; An elliptic curve, describing the relationships between invariants of an ellipse; A differential equation with an elliptic operator; An elliptic partial differential equation

  5. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    Given a curve, E, defined by some equation in a finite field (such as E: y 2 = x 3 + ax + b), point multiplication is defined as the repeated addition of a point along that curve. Denote as nP = P + P + P + … + P for some scalar (integer) n and a point P = ( x , y ) that lies on the curve, E .

  6. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    This equation is not defined on the line at infinity, but we can multiply by to get one that is : Z Y 2 = X 3 + a Z 2 X + b Z 3 {\displaystyle ZY^{2}=X^{3}+aZ^{2}X+bZ^{3}} This resulting equation is defined on the whole projective plane, and the curve it defines projects onto the elliptic curve of interest.

  7. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = ⁡ ⁡, = ⁡ ⁡, = ⁡. Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.

  8. Elliptic function - Wikipedia

    en.wikipedia.org/wiki/Elliptic_function

    is an odd function, i.e. ℘ ′ = ℘ ′ (). [6] One of the main results of the theory of elliptic functions is the following: Every elliptic function with respect to a given period lattice Λ {\displaystyle \Lambda } can be expressed as a rational function in terms of ℘ {\displaystyle \wp } and ℘ ′ {\displaystyle \wp '} .

  9. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.