enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    Convergence means there is a value after summing infinitely many terms, whereas divergence means no value after summing. The convergence of a geometric series can be described depending on the value of a common ratio, see § Convergence of the series and its proof.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  4. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    If r < 1, then the series is absolutely convergent. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows:

  5. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  6. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    The geometric series on the real line. In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    This means that if the original series converges, so does the new series after grouping: all infinite subsequences of a convergent sequence also converge to the same limit. However, if the original series diverges, then the grouped series do not necessarily diverge, as in this example of Grandi's series above.

  8. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    If diverges and converges, then necessarily =, that is, =. The essential content here is that in some sense the numbers a n {\displaystyle a_{n}} are larger than the numbers b n {\displaystyle b_{n}} .

  9. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    by the divergence of the harmonic series. This shows that x k ≥ 1 {\displaystyle x_{k}\geq 1} for all k {\displaystyle k} , and since the tails of a convergent series must themselves converge to zero, this proves divergence.