Search results
Results from the WOW.Com Content Network
In text-to-image retrieval, users input descriptive text, and CLIP retrieves images with matching embeddings. In image-to-text retrieval , images are used to find related text content. CLIP’s ability to connect visual and textual data has found applications in multimedia search, content discovery, and recommendation systems.
Contrastive Language-Image Pre-training (CLIP) allows joint pretraining of a text encoder and an image encoder, such that a matching image-text pair have image encoding vector and text encoding vector that span a small angle (having a large cosine similarity).
DALL-E was developed and announced to the public in conjunction with CLIP (Contrastive Language-Image Pre-training). [23] CLIP is a separate model based on contrastive learning that was trained on 400 million pairs of images with text captions scraped from the Internet. Its role is to "understand and rank" DALL-E's output by predicting which ...
The model has two possible training schemes to produce word vector representations, one generative and one contrastive. [27] The first is word prediction given each of the neighboring words as an input. [28] The second is training on the representation similarity for neighboring words and representation dissimilarity for random pairs of words. [10]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
While traditional linguistic studies had developed comparative methods (comparative linguistics), chiefly to demonstrate family relations between cognate languages, or to illustrate the historical developments of one or more languages, modern contrastive linguistics intends to show in what ways the two respective languages differ, in order to help in the solution of practical problems.
That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model). Also in 2018, OpenAI published Improving Language Understanding by Generative Pre-Training, which introduced GPT-1, the first in its GPT series. [29]
The majority of the studies done on contrast and contrastive relations in semantics has concentrated on characterizing exactly which semantic relationships could give rise to contrast. Earliest studies in semantics also concentrated on identifying what distinguished clauses joined by and from clauses joined by but .