enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Specific impulse and effective exhaust velocity are dependent on the nozzle design unlike the characteristic velocity, explaining why C-star is an important value when comparing different propulsion system efficiencies. c* can be useful when comparing actual combustion performance to theoretical performance in order to determine how completely ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Dunkerley's method - Wikipedia

    en.wikipedia.org/wiki/Dunkerley's_Method

    The whirling frequency of a symmetric cross section of a given length between two points is given by: = where: E = Young's modulus, I = second moment of area, m = mass of the shaft, L = length of the shaft between points.

  5. Gurney equations - Wikipedia

    en.wikipedia.org/wiki/Gurney_equations

    As a simple approximate equation, the physical value of is usually very close to 1/3 of the detonation velocity of the explosive material for standard explosives. [1] For a typical set of military explosives, the value of D 2 E {\displaystyle {\frac {D}{\sqrt {2E}}}} ranges from between 2.32 for Tritonal and 3.16 for PAX-29n.

  6. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  7. Protonation - Wikipedia

    en.wikipedia.org/wiki/Protonation

    In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), usually denoted by H +, to an atom, molecule, or ion, forming a conjugate acid. [1] (The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include The protonation of water by ...

  8. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1] This means that a sodium ion in an electric field of 1 V/m would have an average drift velocity of 5.19 × 10 −8 m/s. Such values can be obtained from measurements of ionic conductivity in solution.

  9. Relativistic rocket - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives