Search results
Results from the WOW.Com Content Network
Dual-channel memory slots, color-coded orange and yellow for this particular motherboard. Dual-channel-enabled memory controllers in a PC system architecture use two 64-bit data channels. Dual-channel should not be confused with double data rate (DDR), in which data exchange happens twice per DRAM clock. The two technologies are independent of ...
For a 64-bit-wide memory data interface, this equates to having 4 ranks, where each rank can be selected by a 2-bit chip select signal. Memory controllers such as the Intel 945 Chipset list the configurations they support: "256-Mib, 512-Mib, and 1-Gib DDR2 technologies for ×8 and ×16 devices", "four ranks for all DDR2 devices up to 512-Mibit ...
DDR4 RAM operates at a voltage of 1.2 V and supports frequencies between 800 and 1600 MHz (DDR4-1600 through DDR4-3200). Compared to DDR3, which operates at 1.5 V with frequencies from 400 to 1067 MHz (DDR3-800 through DDR3-2133), DDR4 offers better performance and energy efficiency .
In computing, a memory module or RAM stick is a printed circuit board on which memory integrated circuits are mounted. [1] Memory modules permit easy installation and replacement in electronic systems, especially computers such as personal computers, workstations, and servers. The first memory modules were proprietary designs that were specific ...
With the introduction of the Intel 840 (Pentium III), Intel 850 (Pentium 4), Intel 860 (Pentium 4 Xeon) chipsets, Intel added support for dual-channel PC-800 RDRAM, doubling bandwidth to 3200 MB/s by increasing the bus width to 32 bits. This was followed in 2002 by the Intel 850E chipset, which introduced PC-1066 RDRAM, increasing total dual ...
The number of physical DRAMs depends on their individual widths. For example, a rank of ×8 (8-bit wide) DRAMs would consist of eight physical chips (nine if ECC is supported), but a rank of ×4 (4-bit wide) DRAMs would consist of 16 physical chips (18, if ECC is supported). Multiple ranks can coexist on a single DIMM.
The SK Hynix chips were expected to have a transfer rate of 14–16 Gbit/s. [4] The first graphics cards to use SK Hynix's GDDR6 RAM were expected to use 12 GB of RAM with a 384-bit memory bus, yielding a bandwidth of 768 GB/s. [3] SK Hynix began mass production in February 2018, with 8 Gbit chips and a data rate of 14 Gbit/s per pin. [14]
Double data rate (DDR) memory controllers are used to drive DDR SDRAM, where data is transferred on both rising and falling edges of the system's memory clock.DDR memory controllers are significantly more complicated when compared to single data rate controllers, [citation needed] but they allow for twice the data to be transferred without increasing the memory's clock rate or bus width.