enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ⁡ ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.

  3. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    At 298 K, 1 pH unit is approximately equal to 59 mV. [2] When the electrode is calibrated with solutions of known concentration, by means of a strong acid–strong base titration, for example, a modified Nernst equation is assumed. = + ⁡ [] where s is an empirical slope factor.

  4. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    K then appears to have the dimension of 1/concentration. This is what usually happens in practice when an equilibrium constant is calculated as a quotient of concentration values. This can be avoided by dividing each concentration by its standard-state value (usually mol/L or bar), which is standard practice in chemistry. [3]

  5. Mass–action ratio - Wikipedia

    en.wikipedia.org/wiki/Mass–action_ratio

    The ratio of the mass–action ratio to the equilibrium constant is often called the disequilibrium ratio, denoted by the symbol . ρ = Γ K e q {\displaystyle \rho ={\frac {\Gamma }{K_{eq}}}} and is a useful measure for indicating how far from equilibrium a given reaction is.

  6. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  7. Binding constant - Wikipedia

    en.wikipedia.org/wiki/Binding_constant

    The binding constant, or affinity constant/association constant, is a special case of the equilibrium constant K, [1] and is the inverse of the dissociation constant. [2] It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as:

  8. Distribution constant - Wikipedia

    en.wikipedia.org/wiki/Distribution_constant

    The distribution constant (or partition ratio) (K D) is the equilibrium constant for the distribution of an analyte in two immiscible solvents. [1] [2] [3]In chromatography, for a particular solvent, it is equal to the ratio of its molar concentration in the stationary phase to its molar concentration in the mobile phase, also approximating the ratio of the solubility of the solvent in each phase.

  9. Kinetic resolution - Wikipedia

    en.wikipedia.org/wiki/Kinetic_resolution

    The ideal kinetic resolution is that in which only one enantiomer reacts, i.e. k R >>k S. The selectivity (s) of a kinetic resolution is related to the rate constants of the reaction of the R and S enantiomers, k R and k S respectively, by s=k R /k S, for k R >k S. This selectivity can also be referred to as the relative rates of reaction.