Search results
Results from the WOW.Com Content Network
The study noted that YouTube’s recommendation algorithm “drives 70% of all video views.” ... “YouTube’s recommendation system is trained to raise high-quality content on the home page ...
Algorithmic radicalization is the concept that recommender algorithms on popular social media sites such as YouTube and Facebook drive users toward progressively more extreme content over time, leading to them developing radicalized extremist political views. Algorithms record user interactions, from likes/dislikes to amount of time spent on ...
A recommender system (RecSys), or a recommendation system (sometimes replacing system with terms such as platform, engine, or algorithm), is a subclass of information filtering system that provides suggestions for items that are most pertinent to a particular user.
The cold start problem is a well known and well researched problem for recommender systems.Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items (e-commerce, films, music, books, news, images, web pages) that are likely of interest to the user.
The alt-right pipeline (also called the alt-right rabbit hole) is a proposed conceptual model regarding internet radicalization toward the alt-right movement. It describes a phenomenon in which consuming provocative right-wing political content, such as antifeminist or anti-SJW ideas, gradually increases exposure to the alt-right or similar far-right politics.
The user based top-N recommendation algorithm uses a similarity-based vector model to identify the k most similar users to an active user. After the k most similar users are found, their corresponding user-item matrices are aggregated to identify the set of items to be recommended.
The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings without any other information about the users or films, i.e. without the users being identified except by numbers assigned for the contest.
The original algorithm proposed by Simon Funk in his blog post [2] factorized the user-item rating matrix as the product of two lower dimensional matrices, the first one has a row for each user, while the second has a column for each item. The row or column associated to a specific user or item is referred to as latent factors. [4]