enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The Pauli matrices ... explicit properties of the Pauli matrices, ... is the set of all 2 × 2 anti-Hermitian matrices with trace 0. Direct calculation, ...

  3. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system to multiple such systems.In particular, the generalized Pauli matrices for a group of qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits.

  4. Density matrix - Wikipedia

    en.wikipedia.org/wiki/Density_matrix

    In quantum mechanics, a density matrix (or density operator) is a matrix that describes an ensemble [1] of physical systems as quantum states (even if the ensemble contains only one system). It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule.

  5. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye ...

  6. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  7. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...

  8. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...

  9. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...