enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    The first (and only the first) full adder may be replaced by a half adder (under the assumption that =). The layout of a ripple-carry adder is simple, which allows fast design time; however, the ripple-carry adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the previous full adder.

  3. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    A carry-skip adder [nb 1] (also known as a carry-bypass adder) is an adder implementation that improves on the delay of a ripple-carry adder with little effort compared to other adders. The improvement of the worst-case delay is achieved by using several carry-skip adders to form a block-carry-skip adder.

  4. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    A partial full adder, with propagate and generate outputs. Logic gate implementation of a 4-bit carry lookahead adder. A block diagram of a 4-bit carry lookahead adder. For each bit in a binary sequence to be added, the carry-lookahead logic will determine whether that bit pair will generate a carry or propagate a carry.

  5. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.

  6. Verilog - Wikipedia

    en.wikipedia.org/wiki/Verilog

    Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's complement) signed nets and variables. Previously, code authors had to perform signed operations using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition required an explicit description of the Boolean algebra ...

  7. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  8. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.

  9. Numerically controlled oscillator - Wikipedia

    en.wikipedia.org/wiki/Numerically_controlled...

    In some configurations, the phase output is taken from the output of the register which introduces a one clock cycle latency but allows the adder to operate at a higher clock rate. [2] Figure 2: Normalized phase accumulator output. The adder is designed to overflow when the sum of the absolute value of its operands exceeds its capacity (2 N − ...