Search results
Results from the WOW.Com Content Network
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 π (≈ 6.28) rad.
Hence an angle of 1.2 radians would be written today as 1.2 rad; archaic notations include 1.2 r, 1.2 rad, 1.2 c, or 1.2 R. In mathematical writing, the symbol "rad" is often omitted. When quantifying an angle in the absence of any symbol, radians are assumed, and when degrees are meant, the degree sign ° is used.
For example, the cosine and sine of 2π ⋅ 5/37 are the real and imaginary parts, respectively, of the 5th power of the 37th root of unity cos(2π/37) + sin(2π/37)i, which is a root of the degree-37 polynomial x 37 − 1.
Some slide rules, such as the K&E Deci-Lon in the photo, calibrate to be accurate for radian conversion, at 5.73 degrees (off by nearly 0.4% for the tangent and 0.2% for the sine for angles around 5 degrees). Others are calibrated to 5.725 degrees, to balance the sine and tangent errors at below 0.3%.
sin(x) cos(x) Degrees Radians Gradians Turns Exact Decimal Exact Decimal 0° 0 0 g: 0 0 0 1 1 30° 1 / 6 π 33 + 1 / 3 g 1 / 12 1 / 2 0.5 0.8660 45° 1 / 4 π: 50 g 1 / 8 0.7071 0.7071 60° 1 / 3 π 66 + 2 / 3 g 1 / 6
It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy (an earlier table of chords by Hipparchus gave chords only for arcs that were multiples of 7 + 1 / 2 ° = π / 24 radians). [2]