enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  3. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map. It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [ 1 ] where Laurens van der Maaten and Hinton proposed the t ...

  4. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    Here, a subjective judgment about the correspondence can be made (see perceptual mapping). Test the results for reliability and validity – Compute R-squared to determine what proportion of variance of the scaled data can be accounted for by the MDS procedure. An R-square of 0.6 is considered the minimum acceptable level.

  5. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    Distance is inversely proportional to similarity. The "mountains" are edges between clusters. The red lines are links between articles. A careful comparison of random initialization to principal component initialization for a one-dimensional map, however, found that the advantages of principal component initialization are not universal.

  6. HCS clustering algorithm - Wikipedia

    en.wikipedia.org/wiki/HCS_clustering_algorithm

    It does not make any prior assumptions on the number of the clusters. This algorithm was published by Erez Hartuv and Ron Shamir in 2000. The HCS algorithm gives a clustering solution, which is inherently meaningful in the application domain, since each solution cluster must have diameter 2 while a union of two solution clusters will have ...

  7. R-tree - Wikipedia

    en.wikipedia.org/wiki/R-tree

    [9] [10] This is beneficial for many algorithms based on such queries, for example the Local Outlier Factor. DeLi-Clu, [ 11 ] Density-Link-Clustering is a cluster analysis algorithm that uses the R-tree structure for a similar kind of spatial join to efficiently compute an OPTICS clustering.

  8. Parallel coordinates - Wikipedia

    en.wikipedia.org/wiki/Parallel_coordinates

    Parallel Coordinates plots are a common method of visualizing high-dimensional datasets to analyze multivariate data having multiple variables, or attributes. To plot, or visualize, a set of points in n-dimensional space, n parallel lines are drawn over the background representing coordinate axes

  9. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37] The poLCA package [38] clusters categorical data using the latent class model. The clustMD package [25] clusters mixed data, including continuous, binary, ordinal and nominal variables.