Search results
Results from the WOW.Com Content Network
Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. [1] [2] Thus, in internal conversion (often abbreviated IC), a high-energy electron is emitted from the excited atom, but not from the ...
Internal conversion is a transition from a higher to a lower electronic state in a molecule or atom. [1] It is sometimes called "radiationless de-excitation", because no photons are emitted. It differs from intersystem crossing in that, while both are radiationless methods of de-excitation, the molecular spin state for internal conversion ...
Simple electron capture by itself results in a neutral atom, since the loss of the electron in the electron shell is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission. Electron capture is an example of weak interaction, one of the four fundamental forces.
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.
The internal conversion coefficient may be empirically determined by the following formula: = There is no valid formulation for an equivalent concept for E0 (electric monopole) nuclear transitions. There are theoretical calculations that can be used to derive internal conversion coefficients.
A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.
The observation of electron tracks that were independent of the frequency of the incident photon suggested a mechanism for electron ionization that was caused from an internal conversion of energy from a radiationless transition. Further investigation, and theoretical work using elementary quantum mechanics and transition rate/transition ...
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.