Search results
Results from the WOW.Com Content Network
The electromotive force produced by primary (single-use) and secondary (rechargeable) cells is usually of the order of a few volts. The figures quoted below are nominal, because emf varies according to the size of the load and the state of exhaustion of the cell.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
The term back electromotive force is also commonly used to refer to the voltage that occurs in electric motors where there is relative motion between the armature and the magnetic field produced by the motor's field coils or permanent magnet field, thus also acting as a generator while running as a motor. This effect is not due to the motor's ...
In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits.A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core.
This produces a macroscopic bound charge in the material even though all of the charges involved are bound to individual molecules. For example, if every molecule responds the same, similar to that shown in the figure, these tiny movements of charge combine to produce a layer of positive bound charge on one side of the material and a layer of ...
In 1821 Thomas Seebeck discovered that the junction between two metals generates a voltage that is a function of temperature. If a closed circuit consists of conductors of two different metals, and if one junction of the two metals is at a higher temperature than the other, an electromotive force is created in a specific polarity.
The voltage produced by each electrochemical cell in a battery is determined by the chemistry of that cell (see Galvanic cell § Cell voltage). Cells can be combined in series for multiples of that voltage, or additional circuitry added to adjust the voltage to a different level.