Search results
Results from the WOW.Com Content Network
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
1. Naive set theory can mean set theory developed non-rigorously without axioms 2. Naive set theory can mean the inconsistent theory with the axioms of extensionality and comprehension 3. Naive set theory is an introductory book on set theory by Halmos natural The natural sum and natural product of ordinals are the Hessenberg sum and product NCF
Set subtraction complexity: To manage the many identities involving set subtraction, this section is divided based on where the set subtraction operation and parentheses are located on the left hand side of the identity.
In the language of set theory, atomic formulas are of the form x = y or x ∈ y, standing for equality and set membership predicates, respectively. The first level of the Lévy hierarchy is defined as containing only formulas with no unbounded quantifiers and is denoted by Δ 0 = Σ 0 = Π 0 {\displaystyle \Delta _{0}=\Sigma _{0}=\Pi _{0}} . [ 1 ]
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class , which is a collection of sets defined by a formula whose quantifiers range only over sets.
The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity.