Search results
Results from the WOW.Com Content Network
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
For each vertex in , we locate the first vertex in reachable by , and the last vertex in that reaches to . That is, we are looking at how early into Q {\displaystyle Q} we can get from v {\displaystyle v} , and how far we can stay in Q {\displaystyle Q} and still get back to v {\displaystyle v} .
In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).
This involves formulating discrete operators on graphs which are analogous to differential operators in calculus, such as graph Laplacians (or discrete Laplace operators) as discrete versions of the Laplacian, and using these operators to formulate differential equations, difference equations, or variational models on graphs which can be ...
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .
For instance, wheel graphs and connected threshold graphs always have a universal vertex. 3. In the logic of graphs, a vertex that is universally quantified in a formula may be called a universal vertex for that formula. unweighted graph A graph whose vertices and edge s have not been assigned weight s; the opposite of a weighted graph. utility ...
In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge.The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v.