Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
The 3–4 structure is a transcription termination sequence, once it forms RNA polymerase will disassociate from the DNA and transcription of the structural genes of the operon will not occur. Part of the leader transcript codes for a short polypeptide of 14 amino acids, termed the leader peptide.
Once a polymerase is successfully bound to a DNA template, it often requires the assistance of other proteins in order to leave the stable promoter complex and begin elongating the nascent RNA strand. This process is called promoter escape, and is another step at which regulatory elements can act to accelerate or slow the transcription process.
The promoter is recognized by RNA polymerase and an associated sigma factor, which in turn are often brought to the promoter DNA by an activator protein's binding to its own DNA binding site nearby. In eukaryotes The process is more complicated, and at least seven different factors are necessary for the binding of an RNA polymerase II to the ...
[21] [22] Transcription elongation is a processive process. Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA synthesis. For every DNA base pair separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from ...
The 3–4 structure is a transcription termination sequence (abundant in G/C and immediately followed by several uracil residues), once it forms RNA polymerase will disassociate from the DNA and transcription of the structural genes of the operon can not occur (see below for a more detailed explanation). The functional importance of the 2nd ...
There are 52 genes that encode the ribosomal proteins, and they can be found in 20 operons within prokaryotic DNA. Regulation of ribosome synthesis hinges on the regulation of the rRNA itself. First, a reduction in aminoacyl-tRNA will cause the prokaryotic cell to respond by lowering transcription and translation. This occurs through a series ...
After being produced, the stability and distribution of the different transcripts is regulated (post-transcriptional regulation) by means of RNA binding protein (RBP) that control the various steps and rates controlling events such as alternative splicing, nuclear degradation (), processing, nuclear export (three alternative pathways), sequestration in P-bodies for storage or degradation and ...