Search results
Results from the WOW.Com Content Network
Similarly, the interaction in the electric field between atoms is the force responsible for chemical bonding that result in molecules. The electric field is defined as a vector field that associates to each point in space the force per unit of charge exerted on an infinitesimal test charge at rest at that point.
An electric field is a vector field that associates to each point in space the Coulomb force experienced by a unit test charge. [19] The strength and direction of the Coulomb force F {\textstyle \mathbf {F} } on a charge q t {\textstyle q_{t}} depends on the electric field E {\textstyle \mathbf {E} } established by other charges that it finds ...
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be ...
It describes the electric field produced by charged particles and by charge distributions. According to Gauss's law, the flux (or flow) of electric field through any closed surface is proportional to the amount of charge that is enclosed by that surface. [9] [10] This means that the greater the charge, the greater the electric field that is ...
An electric charge, such as a single electron in space, has an electric field surrounding it. In pictorial form, this electric field is shown as "lines of flux" being radiated from a dot (the charge). These are called Gauss lines. [2] Note that field lines are a graphic illustration of field strength and direction and have no physical meaning.