Search results
Results from the WOW.Com Content Network
A sequence of regular polygons with numbers of sides equal to powers of two, inscribed in a circle. The ratios between areas or perimeters of consecutive polygons in the sequence give the terms of Viète's formula. Viète obtained his formula by comparing the areas of regular polygons with 2 n and 2 n + 1 sides inscribed in a circle.
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
5 [21] The simplest polygon which can exist as a regular star. A star pentagon is known as a pentagram or pentacle. hexagon: 6 [21] Can tile the plane. heptagon (or septagon) 7 [21] The simplest polygon such that the regular form is not constructible with compass and straightedge. However, it can be constructed using a neusis construction ...
[5] The subdivision of the polygon into triangles forms a planar graph, and Euler's formula + = gives an equation that applies to the number of vertices, edges, and faces of any planar graph. The vertices are just the grid points of the polygon; there are = + of them. The faces are the triangles of the subdivision, and the single region of the ...
[2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).
This formula can be derived by partitioning the n-sided polygon into n congruent isosceles triangles, and then noting that the apothem is the height of each triangle, and that the area of a triangle equals half the base times the height. The following formulations are all equivalent:
This is a list of volume formulas of basic shapes: [4]: 405–406 Cone – , where is the base's radius; Cube – , where is the side's length;; Cuboid – , where , , and are the sides' length;
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]