enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Galilean invariance - Wikipedia

    en.wikipedia.org/wiki/Galilean_invariance

    Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ...

  3. Galileo's paradox - Wikipedia

    en.wikipedia.org/wiki/Galileo's_paradox

    The relevant section of Two New Sciences is excerpted below: [2]. Simplicio: Here a difficulty presents itself which appears to me insoluble.Since it is clear that we may have one line greater than another, each containing an infinite number of points, we are forced to admit that, within one and the same class, we may have something greater than infinity, because the infinity of points in the ...

  4. Galilean transformation - Wikipedia

    en.wikipedia.org/wiki/Galilean_transformation

    In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout ...

  5. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    A typical example is Maxwell's equations. Another is Newton's first law. 1. First Postulate (Principle of relativity) Under transitions between inertial reference frames, the equations of all fundamental laws of physics stay form-invariant, while all the numerical constants entering these equations preserve their values.

  6. Invariant (physics) - Wikipedia

    en.wikipedia.org/wiki/Invariant_(physics)

    Another examples of physical invariants are the speed of light, and charge and mass of a particle observed from two reference frames moving with respect to one another (invariance under a spacetime Lorentz transformation [1]), and invariance of time and acceleration under a Galilean transformation between two such frames moving at low velocities.

  7. Gauge theory - Wikipedia

    en.wikipedia.org/wiki/Gauge_theory

    The concept and the name of gauge theory derives from the work of Hermann Weyl in 1918. [1] Weyl, in an attempt to generalize the geometrical ideas of general relativity to include electromagnetism, conjectured that Eichinvarianz or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity.

  8. Representation theory of the Galilean group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Any unitary irrep of this little group also gives rise to a projective irrep of the Galilean group. As far as we can tell, only the case which transforms trivially under the little group has any physical interpretation, and it corresponds to the no-particle state, the vacuum. The case where the invariant is negative requires additional comment.

  9. Principle of relativity - Wikipedia

    en.wikipedia.org/wiki/Principle_of_relativity

    Whether the transformation is actually Galilean or Lorentzian must be determined with physical experiments. It is not possible to conclude that the speed of light c is invariant by mathematical logic alone. In the Lorentzian case, one can then obtain relativistic interval conservation and the constancy of the speed of light.