Search results
Results from the WOW.Com Content Network
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
Cutting speed may be defined as the rate at the workpiece surface, irrespective of the machining operation used. A cutting speed for mild steel of 100 ft/min is the same whether it is the speed of the cutter passing over the workpiece, such as in a turning operation, or the speed of the cutter moving past a workpiece, such as in a milling operation.
Calculation of the steam turbine shaft radius for a turboset: Assumptions: Power carried by the shaft is 1000 MW; this is typical for a large nuclear power plant. Yield stress of the steel used to make the shaft (τ yield) is: 250 × 10 6 N/m 2. Electricity has a frequency of 50 Hz; this is the typical frequency in Europe. In North America, the ...
In this case 0.6 applies to the example steel, known as EN8 bright, although it can vary from 0.58 to 0.62 depending on application. EN8 bright has a tensile strength of 800 MPa and mild steel, for comparison, has a tensile strength of 400 MPa. To calculate the force to shear a 25 mm diameter bar of EN8 bright steel;
The carbon equivalent is a measure of the tendency of the weld to form martensite on cooling and to suffer brittle fracture. When the carbon equivalent is between 0.40 and 0.60 weld preheat may be necessary. When the carbon equivalent is above 0.60, preheat is necessary, postheat may be necessary. The following carbon equivalent formula is used ...
The following stresses are induced in the shafts. Shear stresses due to the transmission of torque (due to torsional load). Bending stresses (tensile or compressive) due to the forces acting upon the machine elements like gears and pulleys as well as the self weight of the shaft. Stresses due to combined torsional and bending loads.