Search results
Results from the WOW.Com Content Network
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques.
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The term kinematic is the English version of A.M. Ampère's cinématique, [9] which he constructed from the Greek κίνημα kinema ("movement, motion"), itself derived from κινεῖν kinein ("to move"). [10] [11] Kinematic and cinématique are related to the French word cinéma, but neither are directly derived from it.
The current version is a revised version of the original 1960 textbook Physics for Students of Science and Engineering by Halliday and Resnick, which was published in two parts (Part I containing Chapters 1-25 and covering mechanics and thermodynamics; Part II containing Chapters 26-48 and covering electromagnetism, optics, and introducing ...
The 'rule of thumb' that the rate of chemical reactions doubles for every 10 °C temperature rise is a common misconception. This may have been generalized from the special case of biological systems, where the α (temperature coefficient) is often between 1.5 and 2.5. The kinetics of rapid reactions can be studied with the temperature jump method.
The general case of a rotating rigid body can be modeled using kinematic screw theory, which includes one axial vector, angular velocity Ω(t), and one polar vector, linear velocity v(t). From this, the angular acceleration is defined as