enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  3. Bogosort - Wikipedia

    en.wikipedia.org/wiki/Bogosort

    In computer science, bogosort [1] [2] (also known as permutation sort and stupid sort [3]) is a sorting algorithm based on the generate and test paradigm. The function successively generates permutations of its input until it finds one that is sorted. It is not considered useful for sorting, but may be used for educational purposes, to contrast ...

  4. Random permutation - Wikipedia

    en.wikipedia.org/wiki/Random_permutation

    A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Fisher–Yates shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 0 through n − 2 (we use a convention where the first element has index 0, and the last element has index n − 1), and for each position i swap the element ...

  5. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    If such a generator is used to shuffle a deck of 52 playing cards, it can only ever produce a very small fraction of the 52! ≈ 2 225.6 possible permutations. [24] It is impossible for a generator with less than 226 bits of internal state to produce all the possible permutations of a 52-card deck.

  6. Superpermutation - Wikipedia

    en.wikipedia.org/wiki/Superpermutation

    For instance, in the case of n = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations. It has been shown that for 1 ≤ n ≤ 5, the smallest superpermutation on n symbols has length 1! + 2! + … + n !

  7. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...

  8. List of permutation topics - Wikipedia

    en.wikipedia.org/wiki/List_of_permutation_topics

    Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...

  9. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...