Search results
Results from the WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In mathematics, the term linear function refers to two distinct but related notions: [1]. In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2]
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
A conjecture of Erdős which has attracted considerable interest concerns the maximum length of a polynomial lemniscate ƒ(x, y) = 1 of degree 2n when p is monic, which Erdős conjectured was attained when p(z) = z n − 1. This is still not proved but Fryntov and Nazarov proved that p gives a local maximum. [1]
A necessary (but not sufficient) condition for solvability is that n is not divisible by 4 or by a prime of form 4k + 3. [note 3] Thus, for example, x 2 − 3 y 2 = −1 is never solvable, but x 2 − 5 y 2 = −1 may be. [27] The first few numbers n for which x 2 − n y 2 = −1 is solvable are with only one trivial solution: 1
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
In general, every implicit curve is defined by an equation of the form (,) = for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.