Search results
Results from the WOW.Com Content Network
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
A directory traversal (or path traversal) attack exploits insufficient security validation or sanitization of user-supplied file names, such that characters representing "traverse to parent directory" are passed through to the operating system's file system API. An affected application can be exploited to gain unauthorized access to the file system
A universal traversal sequence is a sequence of instructions comprising a graph traversal for any regular graph with a set number of vertices and for any starting vertex. A probabilistic proof was used by Aleliunas et al. to show that there exists a universal traversal sequence with number of instructions proportional to O ( n 5 ) for any ...
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such are allowed) has height −1.
The parent attribute of each node is useful for accessing the nodes in a shortest path, for example by backtracking from the destination node up to the starting node, once the BFS has been run, and the predecessors nodes have been set. Breadth-first search produces a so-called breadth first tree.
The tree-order is the partial ordering on the vertices of a tree with u < v if and only if the unique path from the root to v passes through u. A rooted tree T that is a subgraph of some graph G is a normal tree if the ends of every T-path in G are comparable in this tree-order (Diestel 2005, p. 15).
Euler tour of a tree, with edges labeled to show the order in which they are traversed by the tour. The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge