Search results
Results from the WOW.Com Content Network
Running an experiment, seeing a pattern in the data, proposing a hypothesis from that pattern, then using the same experimental data as evidence for the new hypothesis is extremely suspect, because data from all other experiments, completed or potential, has essentially been "thrown out" by choosing to look only at the experiments that ...
Conversely, a “large" R 2 (scaled by the sample size so that it follows the chi-squared distribution) counts against the hypothesis of homoskedasticity. An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a ...
Statistical hypothesis testing is considered a mature area within statistics, [25] but a limited amount of development continues. An academic study states that the cookbook method of teaching introductory statistics leaves no time for history, philosophy or controversy. Hypothesis testing has been taught as received unified method.
In hypothesis testing, the primary objective of statistical calculations is to obtain a p-value, the probability of seeing an obtained result, or a more extreme result, when assuming the null hypothesis is true. If the p-value is low (usually < 0.05), the statistical practitioner is then encouraged to reject the null hypothesis.
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
It belongs to the family of sparse sampling tests. It acts as a statistical hypothesis test where the null hypothesis is that the data is generated by a Poisson point process and are thus uniformly randomly distributed. [2] If individuals are aggregated, then its value approaches 0, and if they are randomly distributed along the value tends to ...
Note: Fisher's G-test in the GeneCycle Package of the R programming language (fisher.g.test) does not implement the G-test as described in this article, but rather Fisher's exact test of Gaussian white-noise in a time series. [10] Another R implementation to compute the G statistic and corresponding p-values is provided by the R package entropy.
A binomial test is a statistical hypothesis test used to determine whether the proportion of successes in a sample differs from an expected proportion in a binomial distribution. It is useful for situations when there are two possible outcomes (e.g., success/failure, yes/no, heads/tails), i.e., where repeated experiments produce binary data .