Search results
Results from the WOW.Com Content Network
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
Selected witch of Agnesi curves (green), and the circles they are constructed from (blue), with radius parameters =, =, =, and =.. In mathematics, the witch of Agnesi (Italian pronunciation: [aɲˈɲeːzi,-eːsi;-ɛːzi]) is a cubic plane curve defined from two diametrically opposite points of a circle.
Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}
In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations. [18] The equation x 2 + y 2 = r 2 is the equation for any circle centered at the origin (0, 0) with a radius of r.
The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:
The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.
Animation showing curve adaptation as the ratio a / b increases from 0 to 1. The animation shows the curve adaptation with continuously increasing a / b fraction from 0 to 1 in steps of 0.01 (δ = 0). Below are examples of Lissajous figures with an odd natural number a, an even natural number b, and | a − b | = 1.
Contract curve; Cost curve; Demand curve. Aggregate demand curve; Compensated demand curve; Duck curve; Engel curve; Hubbert curve; Indifference curve; J curve; Kuznets curve; Laffer curve; Lorenz curve; Phillips curve; Supply curve. Aggregate supply curve; Backward bending supply curve of labor