Search results
Results from the WOW.Com Content Network
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.
This is the set of points in 3-dimensional Euclidean space found exactly one unit away from the origin. It is called the 2-sphere, S 2, for reasons given below. The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1 ...
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.
The Poincaré homology sphere (also known as Poincaré dodecahedral space) is a particular example of a homology sphere. Being a spherical 3-manifold, it is the only homology 3-sphere (besides the 3-sphere itself) with a finite fundamental group. Its fundamental group is known as the binary icosahedral group and has order 120.
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
The two-dimensional analogue of the Poincaré conjecture says that any two-dimensional topological manifold which is closed and connected but non-homeomorphic to the two-dimensional sphere must possess a loop which cannot be continuously contracted to a point. (This is illustrated by the example of the torus, as above.)
Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.
In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...