Search results
Results from the WOW.Com Content Network
The simplest approach is to focus on the description in terms of plane matter waves for a free particle, that is a wave function described by =, where is a position in real space, is the wave vector in units of inverse meters, ω is the angular frequency with units of inverse time and is time.
The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half. The dispersion relation for deep water waves is often written as
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
Propagation of a wave packet demonstrating a phase velocity greater than the group velocity. This shows a wave with the group velocity and phase velocity going in different directions. The group velocity is positive, while the phase velocity is negative. [1] The phase velocity of a wave is the rate at which the wave propagates in any medium.
The dashed lines represent contours of the velocity field (streamlines), showing the motion of the whole field at the same time. (See high resolution version.) Solid blue lines and broken grey lines represent the streamlines. The red arrows show the direction and magnitude of the flow velocity. These arrows are tangential to the streamline.
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
To localize a particle, de Broglie proposed a superposition of different wavelengths ranging around a central value in a wave packet, [24] a waveform often used in quantum mechanics to describe the wave function of a particle. In a wave packet, the wavelength of the particle is not precise, and the local wavelength deviates on either side of ...