Search results
Results from the WOW.Com Content Network
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
The above relation between wave momentum M and wave energy density E is valid within the framework of Stokes' first definition. However, for waves perpendicular to a coast line or in closed laboratory wave channel, the second definition (S2) is more appropriate. These wave systems have zero mass flux and momentum when using the second ...
In the de Broglie hypothesis, the velocity of a particle equals the group velocity of the matter wave. [ 2 ] : 214 In isotropic media or a vacuum the group velocity of a wave is defined by: v g = ∂ ω ( k ) ∂ k {\displaystyle \mathbf {v_{g}} ={\frac {\partial \omega (\mathbf {k} )}{\partial \mathbf {k} }}} The relationship between the ...
The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half. The dispersion relation for deep water waves is often written as
Propagation of a wave packet demonstrating a phase velocity greater than the group velocity. This shows a wave with the group velocity and phase velocity going in different directions. The group velocity is positive, while the phase velocity is negative. [1] The phase velocity of a wave is the rate at which the wave propagates in any medium.
The phase velocity varies with frequency. The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
In a sound wave, the complementary variable to sound pressure is the particle velocity. Together, they determine the sound intensity of the wave. Sound intensity, denoted I and measured in W·m −2 in SI units, is defined by =, where p is the sound pressure, v is the particle velocity.
where ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular frequency of the wave, and v p is the phase velocity of the wave. The dependence of the wavenumber on the frequency (or more commonly the frequency on the wavenumber) is known as a dispersion relation.