Search results
Results from the WOW.Com Content Network
The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2] Thus the critical points of a cubic function f defined by f(x) = ax 3 + bx 2 + cx + d, occur at values of x such that the derivative + + = of the cubic function is zero.
This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).
If the parametrization is given by rational functions = (), = (), where p , q , and r are set-wise coprime polynomials, a resultant computation allows one to implicitize. More precisely, the implicit equation is the resultant with respect to t of xr ( t ) – p ( t ) and yr ( t ) – q ( t ) .
More precisely, a function f of one argument from a given domain is a polynomial function if there exists a polynomial + + + + + that evaluates to () for all x in the domain of f (here, n is a non-negative integer and a 0, a 1, a 2, ..., a n are constant coefficients). [23]
where h is a univariate polynomial in x 0 of degree D and g 0, ..., g n are univariate polynomials in x 0 of degree less than D. Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables.
Khan Academy is an American non-profit [3] educational organization created in 2006 by Sal Khan. [1] Its goal is to create a set of online tools that help educate students. [ 4 ] The organization produces short video lessons. [ 5 ]
Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...