Search results
Results from the WOW.Com Content Network
The normal force is actually the sum of the radial and tangential forces. The component of weight force is responsible for the tangential force (when we neglect friction). The centripetal force is due to the change in the direction of velocity. The normal force and weight may also point in the same direction.
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
When calculating a maximum velocity for our automobile, friction will point down the incline and towards the center of the circle. Therefore, we must add the horizontal component of friction to that of the normal force. The sum of these two forces is our new net force in the direction of the center of the turn (the centripetal force):
[note 9] The force required to sustain this acceleration, called the centripetal force, is therefore also directed toward the center of the circle and has magnitude /. Many orbits, such as that of the Moon around the Earth, can be approximated by uniform circular motion.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5] =.
[4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.
The reason the rotating observer sees zero tension is because of yet another fictitious force in the rotating world, the Coriolis force, which depends on the velocity of a moving object. In this zero-tension case, according to the rotating observer, the spheres now are moving, and the Coriolis force (which depends upon velocity) is activated.