enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    There are only 21853 pseudoprimes base 2 that are less than 2.5 × 10 10 (see page 1005 of [3]). This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers (Carmichael numbers) have the property that a n − 1 is 1 (modulo n) for every a that ...

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    Not every number that is prime among the integers remains prime in the Gaussian integers; for instance, the number 2 can be written as a product of the two Gaussian primes + and ⁠ ⁠. Rational primes (the prime elements in the integers) congruent to 3 mod 4 are Gaussian primes, but rational primes congruent to 1 mod 4 are not. [ 113 ]

  5. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    (In modern terminology: if a prime p divides the product ab, then p divides either a or b or both.) Proposition 30 is referred to as Euclid's lemma, and it is the key in the proof of the fundamental theorem of arithmetic. Any composite number is measured by some prime number. —

  7. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    For example, ⁠ 1 / 4 ⁠, ⁠ 5 / 6 ⁠, and ⁠ −101 / 100 ⁠ are all irreducible fractions. On the other hand, ⁠ 2 / 4 ⁠ is reducible since it is equal in value to ⁠ 1 / 2 ⁠, and the numerator of ⁠ 1 / 2 ⁠ is less than the numerator of ⁠ 2 / 4 ⁠. A fraction that is reducible can be reduced by dividing both the numerator ...

  8. Percentage - Wikipedia

    en.wikipedia.org/wiki/Percentage

    An increase of $0.15 on a price of $2.50 is an increase by a fraction of ⁠ 0.15 / 2.50 ⁠ = 0.06. Expressed as a percentage, this is a 6% increase. While many percentage values are between 0 and 100, there is no mathematical restriction and percentages may take on other values. [4]

  9. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    With the exception of 7, a safe prime q is of the form 6k − 1 or, equivalently, q ≡ 5 (mod 6) – as is p > 3. Similarly, with the exception of 5, a safe prime q is of the form 4k − 1 or, equivalently, q ≡ 3 (mod 4) — trivially true since (q − 1) / 2 must evaluate to an odd natural number.