Search results
Results from the WOW.Com Content Network
The graph of the constant function y = c is a horizontal line in the plane that passes through the point (0, c). [2] In the context of a polynomial in one variable x, the constant function is called non-zero constant function because it is a polynomial of degree 0, and its general form is f(x) = c, where c is nonzero.
The derivative of a constant function is zero, as noted above, and the differential operator is a linear operator, so functions that only differ by a constant term have the same derivative. To acknowledge this, a constant of integration is added to an indefinite integral; this ensures that all possible solutions are included. The constant of ...
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The smallest constant is sometimes called the (best) Lipschitz constant [4] of f or the dilation or dilatation [5]: p. 9, Definition 1.4.1 [6] [7] of f. If K = 1 the function is called a short map, and if 0 ≤ K < 1 and f maps a metric space to itself, the function is called a contraction.
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.
The constant e is intrinsically related to the exponential function. The Swiss mathematician Jacob Bernoulli discovered that e arises in compound interest : If an account starts at $1, and yields interest at annual rate R , then as the number of compounding periods per year tends to infinity (a situation known as continuous compounding ), the ...
The signum function restricted to the domain {} is locally constant.. In mathematics, a locally constant function is a function from a topological space into a set with the property that around every point of its domain, there exists some neighborhood of that point on which it restricts to a constant function.
The derivative of a constant term is 0, so when a term containing a constant term is differentiated, the constant term vanishes, regardless of its value. Therefore the antiderivative is only determined up to an unknown constant term, which is called "the constant of integration" and added in symbolic form (usually denoted as ).