enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots. The case for an oscillating far-field flow, with the plate held at rest, can easily be constructed from the previous solution for an oscillating plate by using linear superposition of solutions.

  3. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [ 1 ] and used by him to prove the parabolic form of projectile motion.

  4. Mountain climbing problem - Wikipedia

    en.wikipedia.org/wiki/Mountain_climbing_problem

    The problem can be rephrased as asking whether, for a given pair of continuous functions , with () = =, = = (corresponding to rescaled versions of the left and right faces of the mountain), it is possible to find another pair of functions , with () = =, = = (the climbers' horizontal positions at time ) such that the function compositions and (the climbers' altitudes at time ) are the same ...

  5. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    Ideal projectile motion states that there is no air resistance and no change in gravitational acceleration.This assumption simplifies the mathematics greatly, and is a close approximation of actual projectile motion in cases where the distances travelled are small.

  6. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  7. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    A basic motion planning problem is to compute a continuous path that connects a start configuration S and a goal configuration G, while avoiding collision with known obstacles. The robot and obstacle geometry is described in a 2D or 3D workspace , while the motion is represented as a path in (possibly higher-dimensional) configuration space .

  8. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    Assume the motion of the projectile is being measured from a free fall frame which happens to be at (x,y) = (0,0) at t = 0. The equation of motion of the projectile in this frame (by the equivalence principle ) would be y = x tan ⁡ ( θ ) {\displaystyle y=x\tan(\theta )} .

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun