Search results
Results from the WOW.Com Content Network
In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H 2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols , and imines to amines .
Benzaldehyde (C 6 H 5 CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond -like odor , and is commonly used in cherry -flavored sodas . [ 5 ]
Like other hydroxylamines it will react with aldehydes to form nitrones, illustrative is the condensation with benzaldehyde to form diphenylnitrone, a well-known 1,3-dipolar compound: [4] C 6 H 5 NHOH + C 6 H 5 CHO → C 6 H 5 N(O)=CHC 6 H 5 + H 2 O. Phenylhydroxylamine is attacked by NO + sources to give cupferron: [5] C 6 H 5 NHOH + C 4 H 9 ...
The transition state of two transfer-hydrogenation reactions from ruthenium-hydride complexes onto carbonyls. Transfer hydrogenation uses hydrogen-donor molecules other than molecular H 2. These "sacrificial" hydrogen donors, which can also serve as solvents for the reaction, include hydrazine, formic acid, and alcohols such as isopropanol. [18]
The first step in this procedure is an acid catalyzed aldol condensation between benzaldehyde and a 3-cyclooxapentanone to an o-hydroxychalcone. Bromination of the alkene group gives a dibromo-adduct which rearranges to the flavonol by reaction with potassium hydroxide .
A Knoevenagel condensation is demonstrated in the reaction of 2-methoxybenzaldehyde 1 with the thiobarbituric acid 2 in ethanol using piperidine as a base. [7] The resulting enone 3 is a charge transfer complex molecule.
Shuttle catalysis is used to describe catalytic reactions where a chemical entity of a donor molecule is transferred to an acceptor molecule. [1] In these reactions, while the number of chemical bonds of each reactant changes, the types and total number of chemical bonds remain constant over the course of the reaction.
[1] [2] Mechanism of one type of carbonyl addition hydrogen auto-transfer reaction involving hydrometalation (step 2). [ 3 ] Hydrogen auto-transfer , also known as borrowing hydrogen , is the activation of a chemical reaction by temporary transfer of two hydrogen atoms from the reactant to a catalyst and return of those hydrogen atoms back to a ...