Search results
Results from the WOW.Com Content Network
t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.
[5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point. For example, to calculate the dynamics of a billiard ball being struck, one can approximate the force of the impact by a Dirac delta.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
Measure of magnetism, taking account of the strength and the extent of a magnetic field: weber (Wb) L 2 M T −2 I −1: scalar Mass fraction: x: Mass of a substance as a fraction of the total mass kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a ...
Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.
Specific impulse (usually abbreviated I sp) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the impulse, i.e. change in momentum, per mass of propellant. This is equivalent to "thrust per massflow".
Two complementary observables cannot be measured simultaneously; instead they satisfy an uncertainty principle. The more accurately one observable is known, the less accurately the other one can be known. Just as there is an uncertainty principle relating position and momentum, there are uncertainty principles for angular momentum.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]