Search results
Results from the WOW.Com Content Network
2×10 −23 J: Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin [6] [7] 10 −22 2–3000×10 −22 J Energy of infrared light photons [8] 10 −21: zepto-(zJ) 1.7×10 −21 J 1 kJ/mol, converted to energy per molecule [9] 2.1×10 ...
kJ kJ 1.0 kJ (240 cal) hectojoule: hJ hJ 1.0 hJ (24 cal) decajoule: daJ daJ 1.0 daJ (2.4 cal) joule: J J 1.0 J (0.24 cal) decijoule: dJ dJ 1.0 dJ (0.024 cal) centijoule: cJ cJ 1.0 cJ (0.0024 cal) millijoule: mJ mJ 1.0 mJ (0.00024 cal) microjoule: μJ (uJ) μJ 1.0 μJ (2.4 × 10 −7 cal) nanojoule: nJ nJ 1.0 nJ (2.4 × 10 −10 cal) picojoule ...
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units , one joule corresponds to one kilogram - square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2 ).
The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ). Log-base-10 of the ratios between various measures of energy
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).
The joule per mole (symbol: J·mol −1 or J/mol) is the unit of energy per amount of substance in the International System of Units (SI), such that energy is measured in joules, and the amount of substance is measured in moles. It is also an SI derived unit of molar thermodynamic energy defined as the energy equal to one joule in one mole of ...
Values from CRC are ionization energies given in the unit eV; other values are molar ionization energies given in the unit kJ/mol.The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element.
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.