Search results
Results from the WOW.Com Content Network
The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 . This number is irrational, but it is not known whether or not it is transcendental. The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any ...
The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares)
The reciprocal of ζ(3) (0.8319073725807... (sequence A088453 in the OEIS )) is the probability that any three positive integers , chosen at random, will be relatively prime , in the sense that as N approaches infinity, the probability that three positive integers less than N chosen uniformly at random will not share a common prime factor ...
A prime p (where p ≠ 2, 5 when working in base 10) is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q. [8]
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3 ≡ p (mod q) is solvable if and only if ...
Then if we denote the lengths of the parallel sides as a and b and half the length of the segment through the diagonal intersection as c, the sum of the reciprocals of a and b equals the reciprocal of c. [4] The special case in which the integers whose reciprocals are taken must be square numbers appears in two ways in the context of right ...