enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.

  3. Green's function (many-body theory) - Wikipedia

    en.wikipedia.org/wiki/Green's_function_(many-body...

    In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...

  4. Redundancy principle (biology) - Wikipedia

    en.wikipedia.org/wiki/Redundancy_principle_(biology)

    These formulas show that the expected arrival time of the fastest particle is in dimension 1 and 2, O(1/\log(N)). They should be used instead of the classical forward rate in models of activation in biochemical reactions. The method to derive formulas is based on short-time asymptotic and the Green's function representation of the Helmholtz ...

  5. Many-body problem - Wikipedia

    en.wikipedia.org/wiki/Many-body_problem

    Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus ...

  6. GW approximation - Wikipedia

    en.wikipedia.org/wiki/GW_approximation

    The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system of electrons. [1] [2] [3] The approximation is that the expansion of the self-energy Σ in terms of the single particle Green's function G and the screened Coulomb interaction W (in units of =)

  7. Coherent potential approximation - Wikipedia

    en.wikipedia.org/wiki/Coherent_Potential...

    The coherent potential approximation (CPA) is a method, in theoretical physics, of finding the averaged Green's function of an inhomogeneous (or disordered) system. The Green's function obtained via the CPA then describes an effective medium whose scattering properties represent the averaged scattering properties of the disordered system being approximated.

  8. Numerical analytic continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_Analytic...

    In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from Quantum Monte Carlo simulations, which often compute Green function ...

  9. Green function - Wikipedia

    en.wikipedia.org/wiki/Green_function

    Green function might refer to: Green's function of a differential operator; Deligne–Lusztig theory (Green function) in the representation theory of finite groups of ...