Search results
Results from the WOW.Com Content Network
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
These formulas show that the expected arrival time of the fastest particle is in dimension 1 and 2, O(1/\log(N)). They should be used instead of the classical forward rate in models of activation in biochemical reactions. The method to derive formulas is based on short-time asymptotic and the Green's function representation of the Helmholtz ...
In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from Quantum Monte Carlo simulations, which often compute Green function ...
The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system of electrons. [1] [2] [3] The approximation is that the expansion of the self-energy Σ in terms of the single particle Green's function G and the screened Coulomb interaction W (in units of =)
Green function might refer to: Green's function of a differential operator; Deligne–Lusztig theory (Green function) in the representation theory of finite groups of ...
The new method, called CGFMD (Causal Green's Function Molecular Dynamics) is the temporal equivalent of the MSGF and is based upon the use of causal or retarded Green's functions. It has been applied [ 25 ] to simulate the propagation of ripples in graphene, [ 9 ] where it has been shown that the CGFMD can model time scales over 6 to 9 orders ...
Because of its many applications in information theory, physics and engineering there exist alternative names for specific linear response functions such as susceptibility, impulse response or impedance; see also transfer function. The concept of a Green's function or fundamental solution of an ordinary differential equation is closely related.