Search results
Results from the WOW.Com Content Network
The two-element subset {3, 5} is a generating set, since (−5) + 3 + 3 = 1 (in fact, any pair of coprime numbers is, as a consequence of Bézout's identity). The dihedral group of an n-gon (which has order 2n ) is generated by the set { r , s } , where r represents rotation by 2 π / n and s is any reflection across a line of symmetry.
Each non-identity element by itself is a generator for the whole group. In mathematics and physics , the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the ...
For example, the dihedral group D 8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D 8 is a product of r ' s and f ' s. However, we have, for example, rfr = f −1, r 7 = r −1, etc., so such products are not unique in D 8. Each such product equivalence can be expressed ...
Quizlet was founded in October 2005 by Andrew Sutherland, who at the time was a 15-year old student, [2] and released to the public in January 2007. [3] Quizlet's primary products include digital flash cards, matching games, practice electronic assessments, and live quizzes. In 2017, 1 in 2 high school students used Quizlet. [4]
Each generator halves the number of runs required. A design with p such generators is a 1/(l p)=l −p fraction of the full factorial design. [3] For example, a 2 5 − 2 design is 1/4 of a two-level, five-factor factorial design.
Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
Start with division by 2: the number is even, and n = 2 · 693. Continue with 693, and 2 as a first divisor candidate. 693 is odd (2 is not a divisor), but is a multiple of 3: one has 693 = 3 · 231 and n = 2 · 3 · 231. Continue with 231, and 3 as a first divisor candidate. 231 is also a multiple of 3: one has 231 = 3 · 77, and thus n = 2 ...
It can be shown that all Pythagorean triples can be obtained, with appropriate rescaling, from the basic Platonic sequence (a, (a 2 − 1)/2 and (a 2 + 1)/2) by allowing a to take non-integer rational values. If a is replaced with the fraction m/n in the sequence, the result is equal to the 'standard' triple generator (2mn, m 2 − n 2, m 2 + n ...