Search results
Results from the WOW.Com Content Network
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes ...
The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: m n − m nuclide / A, where A = Z + N is the mass number. Note that this means ...
Correspondingly, isobars differ in atomic number (or number of protons) but have the same mass number. An example of a series of isobars is 40 S, 40 Cl, 40 Ar, 40 K, and 40 Ca. While the nuclei of these nuclides all contain 40 nucleons, they contain varying numbers of protons and neutrons. [1]
An isotope table with clickable information on every isotope and its decay routes is available at chemlab.pc.maricopa.edu; An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net. app for mobiles: Android or Apple - for PC use The Live Chart of Nuclides - IAEA
^ Tantalum-180m is a "metastable isotope", meaning it is an excited nuclear isomer of tantalum-180. See isotopes of tantalum. However, the half-life of this nuclear isomer is so long that it has never been observed to decay, and it thus is an "observationally stable" primordial nuclide, a rare isotope of tantalum. This is the only nuclear ...
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Nickel-62 is an isotope of nickel having 28 protons and 34 neutrons.. It is a stable isotope, with the highest binding energy per nucleon of any known nuclide (8.7945 MeV). [1] [2] It is often stated that 56 Fe is the "most stable nucleus", but only because 56 Fe has the lowest mass per nucleon (not binding energy per nucleon) of all nuclides.