enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of SI electromagnetism units - Wikipedia

    en.wikipedia.org/wiki/List_of_SI...

    electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric susceptibility (dimensionless) 1 1 p ...

  3. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: . Temperature 298.15 K (25.00 °C; 77.00 °F); ...

  4. Oersted - Wikipedia

    en.wikipedia.org/wiki/Oersted

    In the CGS system, the unit of the H-field is the oersted and the unit of the B-field is the gauss.In the SI system, the unit ampere per meter (A/m), which is equivalent to newton per weber, is used for the H-field and the unit of tesla is used for the B-field.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Some quantities are known as several different names such as the magnetic B-field which is known as the magnetic flux density, the magnetic induction or simply as the magnetic field depending on the context. Similarly, surface tension can be denoted by either σ, γ or T. The table usually lists only one name and symbol that is most commonly used.

  6. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    An electric field (sometimes called E-field [1]) is a physical field that surrounds electrically charged particles.In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capacity to exert attractive or repulsive forces on another charged object.

  7. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  8. Field strength - Wikipedia

    en.wikipedia.org/wiki/Field_strength

    For example, an electromagnetic field has both electric field strength and magnetic field strength. As an application, in radio frequency telecommunications, the signal strength excites a receiving antenna and thereby induces a voltage at a specific frequency and polarization in order to provide an input signal to a radio receiver.

  9. Energy density - Wikipedia

    en.wikipedia.org/wiki/Energy_density

    Electric and magnetic fields can store energy and its density relates to the strength of the fields within a given volume. This (volumetric) energy density is given by u = ε 2 E 2 + 1 2 μ B 2 {\displaystyle u={\frac {\varepsilon }{2}}\mathbf {E} ^{2}+{\frac {1}{2\mu }}\mathbf {B} ^{2}} where E is the electric field , B is the magnetic field ...