Search results
Results from the WOW.Com Content Network
Phototrophic bacteria derive energy from light using photosynthesis, while chemotrophic bacteria breaking down chemical compounds through oxidation, [106] driving metabolism by transferring electrons from a given electron donor to a terminal electron acceptor in a redox reaction. Chemotrophs are further divided by the types of compounds they ...
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
They evolved from symbiotic bacteria and retain a remnant genome. [59] Like bacteria, plant cells have cell walls, and contain organelles such as chloroplasts in addition to the organelles in other eukaryotes. Chloroplasts produce energy from light by photosynthesis, and were also originally symbiotic bacteria. [59]
Electric bacteria are forms of bacteria that directly consume and excrete electrons at different energy potentials without requiring the metabolization of any sugars or other nutrients. [1] This form of life appears to be especially adapted to low-oxygen environments. Most life forms require an oxygen environment in which to release the excess ...
The heliobacteria are phototrophic: they convert light energy into chemical energy using a type I reaction center. [ 6 ] [ 7 ] The primary pigment involved is bacteriochlorophyll g , which is unique to the group and has a unique absorption spectrum ; this gives the heliobacteria their own environmental niche . [ 5 ]
The anoxygenic phototrophic iron oxidation was the first anaerobic metabolism to be described within the iron anaerobic oxidation metabolism. The photoferrotrophic bacteria use Fe 2+ as electron donor and the energy from light to assimilate CO 2 into biomass through the Calvin Benson-Bassam cycle (or rTCA cycle) in a neutrophilic environment (pH 5.5-7.2), producing Fe 3+ oxides as a waste ...
Knallgas bacteria stand out from other hydrogen-oxidizing bacteria that, although using H 2 as energy source, are not able to fix CO 2, as Knallgas do. [ 27 ] This aerobic hydrogen oxidation (H 2 + O 2 {\displaystyle \longrightarrow } H 2 O), also known as the Knallgas reaction, releases a considerable amount of energy, having a ΔG o of –237 ...
Some of these bacteria are able to live at temperatures greater than 100 °C, deep in the ocean where high pressures increase the boiling point of water. Many hyperthermophiles are also able to withstand other environmental extremes, such as high acidity or high radiation levels.