enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The Fresnel equations give the ratio of the reflected wave's electric field to the incident wave's electric field, and the ratio of the transmitted wave's electric field to the incident wave's electric field, for each of two components of polarization. (The magnetic fields can also be related using similar coefficients.)

  3. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    This equation is known as Brewster's law, and the angle defined by it is Brewster's angle. The physical mechanism for this can be qualitatively understood from the manner in which electric dipoles in the media respond to p-polarized light. One can imagine that light incident on the surface is absorbed, and then re-radiated by oscillating ...

  4. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Fresnel diffraction. In optics, the Fresnel diffraction equation for near-field diffraction is an approximation of the Kirchhoff–Fresnel diffraction that can be applied to the propagation of waves in the near field. [ 1] It is used to calculate the diffraction pattern created by waves passing through an aperture or around an object, when ...

  5. Near and far field - Wikipedia

    en.wikipedia.org/wiki/Near_and_far_field

    The near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative near-field behaviors dominate close to the antenna or scatterer, while electromagnetic radiation far-field behaviors predominate at greater distances.

  6. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    Kirchhoff 's diffraction formula [1] [2] (also called Fresnel–Kirchhoff diffraction formula) approximates light intensity and phase in optical diffraction: light fields in the boundary regions of shadows. The approximation can be used to model light propagation in a wide range of configurations, either analytically or using numerical modelling.

  7. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The Huygens–Fresnel principle provides a reasonable basis for understanding and predicting the classical wave propagation of light. However, there are limitations to the principle, namely the same approximations done for deriving the Kirchhoff's diffraction formula and the approximations of near field due to Fresnel. These can be summarized ...

  8. Kirchhoff integral theorem - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff_integral_theorem

    Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that ...

  9. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors . The reflection of light from a single interface between ...