enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision.

  3. Generalized Hebbian algorithm - Wikipedia

    en.wikipedia.org/wiki/Generalized_Hebbian_algorithm

    The generalized Hebbian algorithm is an iterative algorithm to find the highest principal component vectors, in an algorithmic form that resembles unsupervised Hebbian learning in neural networks. Consider a one-layered neural network with n {\displaystyle n} input neurons and m {\displaystyle m} output neurons y 1 , … , y m {\displaystyle y ...

  4. ACE STAR Model of Knowledge Transformation - Wikipedia

    en.wikipedia.org/wiki/ACE_STAR_Model_of...

    The model was developed by Dr. Kathleen Stevens at the Academic Center for Evidence-Based Practice located at the University of Texas Health Science Center at San Antonio. [3] The model has been represented in many nursing textbooks , used as part of an intervention to increase EBP competencies, and as a framework for instruments measuring EBP ...

  5. Learning health systems - Wikipedia

    en.wikipedia.org/wiki/Learning_health_systems

    Positive deviance finds examples of better care against a benchmark. [33] Negative deviance finds examples of sub-optimal care. [30] Predictive patient risk modeling uses patterns in data to find groups at greater risk of adverse events. [34] Predictive care risk and outcome models identify situations that are at greater risk of poor care. [35]

  6. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    The goals of learning are understanding and prediction. Learning falls into many categories, including supervised learning, unsupervised learning, online learning, and reinforcement learning. From the perspective of statistical learning theory, supervised learning is best understood. [4] Supervised learning involves learning from a training set ...

  7. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    The examples are usually administered several times as iterations. The training utilizes competitive learning. When a training example is fed to the network, its Euclidean distance to all weight vectors is computed. The neuron whose weight vector is most similar to the input is called the best matching unit (BMU). The weights of the BMU and ...

  8. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  9. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    Weak supervision (also known as semi-supervised learning) is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them.