enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon dioxide (data page) - Wikipedia

    en.wikipedia.org/wiki/Carbon_dioxide_(data_page)

    To convert heat values to joules per mole values, multiply by 44.095 g/mol. To convert densities to moles per liter, multiply by 22.678 cm 3 mol/(L·g). Data obtained from CRC Handbook of Chemistry and Physics , 44th ed. pages 2560–2561, except for critical temperature line (31.1 °C) and temperatures −30 °C and below, which are taken from ...

  3. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    A normal cubic meter (Nm 3) is the metric expression of gas volume at standard conditions and it is usually (but not always) defined as being measured at 0 °C and 1 atmosphere of pressure. A standard cubic foot (scf) is the USA expression of gas volume at standard conditions and it is often (but not always) defined as being measured at 60 °F ...

  4. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  5. Liquid carbon dioxide - Wikipedia

    en.wikipedia.org/wiki/Liquid_carbon_dioxide

    Jets of liquid carbon dioxide. Liquid carbon dioxide is the liquid state of carbon dioxide (CO 2), which cannot occur under atmospheric pressure.It can only exist at a pressure above 5.1 atm (5.2 bar; 75 psi), under 31.1 °C (88.0 °F) (temperature of critical point) and above −56.6 °C (−69.9 °F) (temperature of triple point). [1]

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Tait equation - Wikipedia

    en.wikipedia.org/wiki/Tait_equation

    Tumlirz-Tammann-Tait equation of state based on fits to experimental data on pure water. A related equation of state that can be used to model liquids is the Tumlirz equation (sometimes called the Tammann equation and originally proposed by Tumlirz in 1909 and Tammann in 1911 for pure water). [4] [10] This relation has the form

  8. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    where P is the pressure of the gas, V is the volume of the gas, and k is a constant for a particular temperature and amount of gas. Boyle's law states that when the temperature of a given mass of confined gas is constant, the product of its pressure and volume is also constant. When comparing the same substance under two different sets of ...

  9. Murnaghan equation of state - Wikipedia

    en.wikipedia.org/wiki/Murnaghan_equation_of_state

    The Murnaghan equation of state is a relationship between the volume of a body and the pressure to which it is subjected. This is one of many state equations that have been used in earth sciences and shock physics to model the behavior of matter under conditions of high pressure.