Search results
Results from the WOW.Com Content Network
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.
The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra
Megagon - 1,000,000 sides; Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star ...
In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular icositetragon, m=12, and it can be divided into 66: 6 squares and 5 sets of 12 rhombs. This decomposition is based on a Petrie polygon projection of a 12-cube.
These lower symmetries allow geometric distortions from 20 equilateral triangular faces, instead having 8 equilateral triangles and 12 congruent isosceles triangles. These symmetries offer Coxeter diagrams : and respectively, each representing the lower symmetry to the regular icosahedron , (*532), [5,3] icosahedral symmetry of order 120.
The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({n/m}#{} where n is odd) or an antiprism ({n/m}#{} where n is even). All polygons in 3 space have an even number of vertices and edges.