Search results
Results from the WOW.Com Content Network
So ordinal numbers exist and are essentially unique. Ordinal numbers are distinct from cardinal numbers, which measure the size of sets. Although the distinction between ordinals and cardinals is not always apparent on finite sets (one can go from one to the other just by counting labels), they are very different in the infinite case, where ...
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
An infinite ordinal is a regular ordinal if it is a limit ordinal that is not the limit of a set of smaller ordinals that as a set has order type less than . A regular ordinal is always an initial ordinal , though some initial ordinals are not regular, e.g., ω ω {\displaystyle \omega _{\omega }} (see the example below).
In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets.
Ordinal indicator – Character(s) following an ordinal number (used when writing ordinal numbers, such as a super-script) Ordinal number – Generalization of "n-th" to infinite cases (the related, but more formal and abstract, usage in mathematics) Ordinal data, in statistics; Ordinal date – Date written as number of days since first day of ...
For each ordinal, + is the least cardinal number greater than . The cardinality of the natural numbers is denoted aleph-null ( ℵ 0 {\displaystyle \aleph _{0}} ), while the cardinality of the real numbers is denoted by " c {\displaystyle {\mathfrak {c}}} " (a lowercase fraktur script "c"), and is also referred to as the cardinality of the ...
The set ω 1 is itself an ordinal number larger than all countable ones, so it is an uncountable set. Therefore, ℵ 1 is distinct from ℵ 0. The definition of ℵ 1 implies (in ZF, Zermelo–Fraenkel set theory without the axiom of choice) that no cardinal number is between ℵ 0 and ℵ 1.
Transfinite numbers: Numbers that are greater than any natural number. Ordinal numbers: Finite and infinite numbers used to describe the order type of well-ordered sets. Cardinal numbers: Finite and infinite numbers used to describe the cardinalities of sets.